Source process with heterogeneous rupture velocity for the 2011 Tohoku-Oki earthquake based on 1-Hz GPS data

نویسندگان

  • Zhen Wang
  • Teruyuki Kato
  • Xin Zhou
  • Jun’ichi Fukuda
چکیده

A rupture model with varying rupture front expansion velocity for the March 11, 2011, Tohoku-Oki earthquake was obtained by the joint inversion of high-rate Global Positioning System (GPS) data and ocean bottom GPS/acoustic (OB-GPS) data. The inverted rupture velocity with a complex distribution gradually increases near the hypocenter and shows rapid rupture expansion at the shallowest part of the fault. The entire rupture process, which lasted 160 s, can be divided into three energy release stages, based on the moment rate function. The preferred slip model, showing a compatible relationship with aftershocks, has a primary asperity concentrated from the hypocenter to the trench and a small asperity located on the southern fault. Source time functions for subfaults and temporal rupture images suggest that repeated slips occurred in the primary rupture, which is consistent with that from seismic waveforms. Our estimated maximum slip and total seismic moment are ~65 m and 4.2 × 10 Nm (Mw 9.0), respectively. The large slip, stress drop, and rupture velocity are all concentrated at shallow depths, which indicates that the shallow part of the fault radiated high-frequency as well as low-frequency seismic waves.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

22 Earthquake Early Warning with GPS Data

The combined use of seismic and geodetic observations is now a common practice for finite-fault modeling and seismic source parametrization. With the advent of highrate 1Hz GPS stations the seismological community has recently begun looking at GPS data as a valid complement to the seismic-based methodologies for Earthquake Early Warning (EEW). In the standard approaches to early warning, the in...

متن کامل

Sources of shaking and flooding during the Tohoku-Oki earthquake: A mixture of rupture styles

Oki earthquake. Here we combine deterministic inversion and dynamically guided forward simulation methods to model over one thousand high-rate GPS and strong motion observations from 0 to 0.25 Hz across the entire Honshu Island. Our results display distinct styles of rupture with a deeper generic interplate event ( Mw8.5) transitioning to a shallow tsunamigenic earthquake ( Mw9.0) at about 25 k...

متن کامل

A detailed source model for theMw9.0 Tohoku-Oki earthquake reconciling geodesy, seismology, and tsunami records

The 11 March 2011 Mw9.0 Tohoku-Oki earthquake was recorded by an exceptionally large amount of diverse data offering a unique opportunity to investigate the details of this major megathrust rupture. Many studies have taken advantage of the very dense Japanese onland strong motion, broadband, and continuous GPS networks in this sense. But resolution tests and the variability in the proposed solu...

متن کامل

Mitigating Artifacts in Back-Projection Source Imaging with Implications on Frequency- Dependent Properties of the Tohoku-Oki Earthquake

Comparing teleseismic array back-projection source images of the 2011 Tohoku-Oki earthquake to results from static and kinematic finite source inversions has revealed little overlap between the regions of high and low frequency slip. Motivated by this interesting observation, backprojection studies extended to intermediate frequencies, down to about 0.1Hz, have proposed that a progressive trans...

متن کامل

Clues from joint inversion of tsunami and geodetic data of the 2011 Tohoku-oki earthquake

The 2011 Tohoku-oki (Mw 9.1) earthquake is so far the best-observed megathrust rupture, which allowed the collection of unprecedented offshore data. The joint inversion of tsunami waveforms (DART buoys, bottom pressure sensors, coastal wave gauges, and GPS-buoys) and static geodetic data (onshore GPS, seafloor displacements obtained by a GPS/acoustic combination technique), allows us to retriev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016